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Survival probability and field theory in systems with absorbing states
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An important quantity in the analysis of systems with absorbing states is the survival prob@ktity the
probability that an initial localized seed of particles has not completely disappeared aftet. tistethe
transition into the absorbing phase, this probability scales for latie t~°. It is not at all obvious how to
compute§ in continuous field theories, wheiy(t) is strictly unity for all finitet. We propose here an
interpretation fors in field theory and devise a practical method to determine it analytically. The method is
applied to field theories representing absorbing-state systems in several distinct universality classes. Scaling
relations are systematically derived and the known exXagalue is obtained for the voter model universality
class.[S1063-651X97)00211-Q

PACS numbse(s): 64.60.Ht, 02.50-r, 05.70.Ln

[. INTRODUCTION some arbitrary site of a lattice otherwise populated by
healthy individuals. The propagation of the infection is then
Certain stochastic nonequ“ibrium systems possess a@IUdiEd. _aS a fu_nction of time for different parameter values_.
sorbing configurations, that is, states that have no fluctualh€ critical point or surface separates the active phase, in
tions, and in which the system can become trapped. AmonﬁghICh the initial infected seed propagates indefinitely, from
the many examples are autocatalytic chemical reacfibhs e absorbing phase, in which the infection dies out with
the contact proce4,3], directed percolatiof3,4], the voter probability one ag—.

model[5], models for the spread of epidemics or forest firesR( :;‘tzr:zjgng)qfssmggisvé? 322?35; tiﬂettai; cua;see E‘J"]Seg' i
[6,7], systems with multiplicative noisg8], and models of ’ s\t), resp y guag p

ransport in random medifa. The number of absorbing CCEER A0 2 SIERGE (S B S ENE I
configurations is typically unity, but can be larger than that 9 glon,

[10], and in some cases can diverge in the thermodynamiBrObab”ity’ i.e., the probability that at timtethe system has
Iimit' [11] not reached an absorbing configuration free from infected

The phase diagram of this kind of system consists, i sites[12]. At the critical point and for asymptotically long

; o ; 17 D2(t) 12
general, of two different phases: absorbing phasein r};m::ts,wiheﬁse r‘j.”fl‘”é'“f‘?s st(r:]ale liRe(t) ~7, R (3)5 t%, and
which the steady state consists entirely of absorbing configut-. s( I) » which define the exponents, z, and o, respec-
rations and in which the order-parameter field vanishes iden-'vwh.l h has b tead . i
tically, and aractive phasgin which the steady-state dynam- ie there has been sleady progress in associating
ics is nontrivial and the order-parameter field has sgroups of discrete Iattlcg modgls with particular field Fheones
nonvanishing expectation value. Separating these two phas Qd h.e”"e a known unlvgrsallty cla§§, an ou.tstandlng p_rob—
is a critical point (or surface of critical poins where the iem with deﬂnmg the lsurvn./al probability remains. The po!nt
system exhibits a nonequilibrium phase transition from th S that fqr microscopic lattice mOd_e'S’ where the dynamical
active to the absorbing phase. As usual, physical quantitie%‘?‘.”.able IS typlc_ally discrete, there IS alvyay_s anonzero prob-

’ ability of reaching the absorbing state in finite time from a

behave like power laws at the critical point. An important d initial ditionP 1) is th learl . .
task is the categorization of different discrete lattice model eed iniial condition s(1) IS then clearly a nonincreasing
nction oft, and the associated exponehtan be readily

with absorbing states into universality classes characterizeq . o ; - . : .
by specific sets of critical exponents. Typically this is done efined at criticality. In field theories with continuous vari-

by associating with each universality class a field theory Withables’ on j[he other hand, the absorbing state is a set of mea-
unique symmetry properties. sure zero in phase space and SO can never a_lctually be reached
Standard quantities of interest such as the order paramet finite time. ThusPs(t).|s strictly eq.ual to unity fp_r alt, SO
M(A), the correlation lengt(A), and the correlation time the concept of the survival probab|I|ty_ has no_ut|I|ty. It is not
7(A) are computed in steady state as functions of the dis?t all clear thatd can even be Sef?s'b'y defined, let a_llone
tanceA to the critical point. Typically, such computations compgted. Indeed_, this expanent Is not calcu_lated dlr_ectly
begin with homogeneously random initial conditions. In Sys_from f'el.d theory n any of the eX|st|r]g analytical ;tud]es.
tems with absorbing states, however, the dynamical evquRather’ its value is inferred from scaling laws relating it to
tion from an initial condition consisting of an absorbing con- other, calculable exponenfé].
figuration slightly modified by a localized “seed” of the
order parameter gives additional information about the criti-
cal point. For a concrete example of such a seed initial con-
dition, consider models for the spread of epidemics. Here the We now propose a solution to this problem by showing
seed consists of an isolated infected individual placed ahow & can be defined and calculated in field theory. The

Il. 6 EXPONENT IN FIELD THEORIES
WITH ABSORBING STATES
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main idea is that, althougR4(t) =1, states arbitrarily close crease with increasingasymptotically. We then defing, at

to the absorbing configuration can be reached in finite timegriticality throughP(«,t)~t~ %, or, taking logarithmic de-

In order to gain intuition about the approach to the absorbingivatives, as

state in models with continuous variables, let us consider the

stochastic partial differential equatidi.angevin formula- 5= "mﬁ In[P(a,t)] ©

tion of the field theory[known as Reggeon field theory “« d Int '

(RFT) [4]], that characterizes the directed-percolation uni-

versality class. Aside from directed percolation, this impor-if ¢ is a real number larger than one, then trivialya,t)

tant class includes, among many other problems, the contact P(ca,t), implying thatés,,=&,. We now conjecture that

process and simple models of heterogeneous catalysis and

epidemiology{3]. 0= 0¢a= 64 (©)
The Langevin equation takes the form

t—o0

for all sufficiently smalla andcea, and thats defined in this
way is the same as the survival probability exponent in the
_ 2 ) corresponding discrete models.

IPXVIN=vVid+a¢=bé™+ én(x.b), @) Though at present there is no direct numerical support for
this conjecture, there is some indirect support. Following a

strategy introduced by Dickmai6], we have numerically

studied discretized versions of RFT, modified so as to pro-
hgiuce an absorbing subspase. Here A, is defined as the
subspace of states in the phase space of the discretized field
theory in which the density fielg; at every pointi of the
discrete spatial lattice is less thanlf the system enters this
subspace as it evolves in time under numerical simulation,
then it is considered to have reached the absorbing state and
the simulation is terminated. Both our simulations of this
type and Dickman'’s results show that the numerical value of
o, is independent ok in such models, and that this value
Icoincides with the value obtained from microscopic models,
such as the contact procdsd, believed to be in the same
(directed-percolationuniversality clasg§17] as RFT. In the
following sections, we use our conjecture to compéttor
various field theories with absorbing states.

where v, a, and b are constants¢g(x,t) is a continuous,
positive-semidefinite variable defined at positioand time

t, and » is a Gaussian noise variable whose only nonvanis
ing correlations are (x,t) (x’,t'))=D 8(x—x") 8(t—t")
for some noise strengt. This stochastic process can,
through standard techniqugk3], be transformed into a La-
grangian formulation, the resulting field theory being RFT. It
is clear from the Langevin equation tha{x)=0 is an ab-
sorbing state that persists indefinitely in time. Roughly
speaking(i.e., at the mean-field levglthis state is stable and
unstable fora<0 anda>0, respectively.

For simplicity, let us now consider the zero-dimensiona
(OD) Langevin equation appropriate for a single variable
dplat=ap—bep>+ py. It is a simple exercise to derive
the (Fokker-Planck equation for the evolution of the prob-
ability distribution function associated with this equation
[14], and from it the stationary probability distribution func-
tion P(¢): P(¢)x(1/¢)exf(2a¢—bdA/D]. P(¢) is non- lll. GENERAL PROCEDURE

normalizable due to the nonintegrable singularity at the ori-  computing & requires the evaluation d?(a,t) for the
gin. This implies that the only stationary distribution isSa  proplem with seed initial conditions. For any field theory,

function at¢=0. (Since this is true fomny avalue, there is  standard methods allow one to expr&sy,t) in a path in-
no active phase in the OD problepn arbitrary initial prob-  tegral representation 443]

ability distribution therefore evolves in time toward a distri-

bution weighted at values @b lying progressively closer to d exp —S)

zero. Note, however, thai# cannot actually achieve the P(“*t):J D¢ Dy ®(j d"x ¢_“)T‘/’(X0*t0)-
value 0 in finite time, so it is difficult to infer directly from (4)
the (Langevin equation of motion tha# always reaches the

absorbing state ab=0 asymptotically. Here ¢ is the density fieldy is the response field) is

It is natural to suppose that a similar phenomenon occurthe Heaviside step functiols=—fdt £ is the action, i.e.,
in higher dimensions, where active-to-absorbing phase trarithe time integral of the dynamical Lagrangian defining the
sitions can occur. That is, any continuous equation in thdield theory, and the normalization factdris the partition
same universality class as a microscopic model with0  function of the associatedl(- 1)-dimensional problem. The
should exhibit at criticalityand of course in the absorbing interpretation of the different terms in EG}) is as follows:
phasg a progressive accumulation or piling up of the prob-¥(Xq,ty) creates a perturbation at positiog and timet,,
ability distribution around the absorbing configuratidb].  representing the initial sedd3]. Subsequently, the average
Based on this notion, we propose to relate the expodent of @(fd’x ¢(x,t)—«) is computed by evaluating all contri-
appearing in the microscopic models to the exponent goverrbutions coming from all possible paths starting at tignand
ing the accumulation of the probability density in a neigh-ending at time>t,. Each path is weighted by the exponen-
borhood of the absorbing state of the corresponding Langeial of its associated action, properly normalized. Since
vin equation or field theory. More specifically, we define ® (fd% ¢(x,t)—a) is O if the total number of particles at
P(«,t) for the field theory as the probability that the spacetime t is less thanae and 1 otherwise, its expectation value
integral of the density field is larger than an arbitrary con-gives preciselyP(«,t).
stanta. Assuming that at the critical point there is a pilingup  As the® function is dimensionless, it follows straightfor-
of probability at the originP(«,t) for any fixeda will de-  wardly from Eq. (4) that the scaling dimensiongl8] of
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P(a,t) and ¢(x,t) are equal. Since Eq$2) and (3) imply stitute a familiar example. In this particular case, the right-
that P(a,t)~t =%, we conclude that- & gives the scaling Nand side of the Langevin equati(xl? acquires[z'l] an extra
dimension[ #(x,t)] of the field , expressed as a power of t€rm proportional tap(x,t)exy —wi/¢ds $(x,s)], i.e., a term

an arbitrary timescal@, i.e., that nonlocal in time, for some constaw. This produces in the
Lagrangian(6) an extra term proportional to the product of
[y]=T°. (5)  this new contribution and the response field this extra

. . term clearly destroys theé« ¢y symmetry.
Thus 6 can be simply computed as the negative of the total |t has peen argued that in this case the scaling relations

dimension of the response field in the field theory. This confoy jnjtial seed problems require modificatid@2). In the
stitutes the main result of this paper and provides a practic@orresponding microscopic models, a new universal expo-
method for determining. Note thaté is well defined in the  nent 7 is defined through the asymptotic time dependence
field theory and is independent af, even though the sur-  of the densityp(t) of particles in the occupied region result-
vival probability P«(t) is always unity. We now use ES)  ing from an initial seed, averaged only over the surviving
to determine scaling relations, and/or the valueSofor dif-  jg|s. It follows from the definitions of the exponents 5,
ferent theories with absorbing states. andz that p(t) ~ (N(t))sur, /L9~t%* 77972 and hence that

IV. APPLICATIONS 2(6+68")+2y=dz (8)
A. Reggeon field theory This is precisely the scaling relation proposed for systems
The dynamical Lagrangian associated with Efj) is  with an infinite number of absorbing statg22]. It follows
[4,13] further from the definition ofp(t) that in generalp(t)
~{(py)/P(a,t). When the permutation symmetry is re-

D e Aivecs! —
‘C:f d dt §¢2¢+ W dp—V2h—rd+ud?)|. (6) stored, this gives)’ = § and we recover Eq.7).

The fields and parameters can be rescaled so as to make C- Voter model and compact directed percolation

the coefficients of the two nonlinear terms the same. This The voter model and compact directed percolafie23]
makes the Lagrangian invariant under tfgermutation  are models that have absorbing states and are known to be-
transformatiorkﬁ(f,t)<—>z/;()?,—t). It is easy to check that in long in a universality class distinct from RFT. The physical
order for the Lagrangian to be dimensionless, we needeason for this is that the dynamics in these models takes
[piylo~T 922, where[ ], denotes the mean-field or engi- Place only at the boundaries separating empty regions and
neering dimension. To account for the anomalous dimensiofccupied(“infected” ) regions, and not in the interior of oc-
[13] coming from the diagrammatic corrections, we write Cupied clusters, as it does in models of the RFT class. This
L2~T?, whereL is a length scale, thereby defining the dy- difference changes the critical exponents and hence the uni-
namical exponenitl9] z, and[ ¢y]~T 972 #+7 wherey ~ Versality class. A Langevin equation describing this situation
and y are defined as the anomalous dimensii®] of the ~ Was proposed 23,24
fields ¢ and i respectively. o2 12
The permutation symmetry yieldss]=[], and conse- hp(X,)=AVS(X, ) +[d(1- )] n(x,t), (9

uently =1, whereupon we conclude th =—0= . _ ) . :
cid2/4¥|—ll’;/. Vze are novs in a position to relag@) the ex. Where the noisey is defined as in Eq(l). The associated
ponentz, an exponent commonly determined in numerical-23rangian is
studies of discrete models with absorbing states. This expo-
nent is defined by the expressiblft) ~t” for the total num- ﬁzf d dt
ber of particlesN(t) in the system at asymptotically large
timest resulting from a single-particle initial se¢d2,20.
Now in the field-theory representatioN(t) is clearly given  Note that this model has two uniform absorbing states:

D 2 2
5 (1= P Wadp—\V2¢)|. (10)

by N(t) ~{[d ¢(x,t)#(0,0))~t*"7, whereupon ¢(x)=0 and¢(x)=1. The Lagrangian is also invariant un-
der the transformatio« 1— ¢, y— — .
46+2n=dz (7 Counting powers as in RFT yieldspy]=T 292 #+7,

where, as beforex and y are the anomalous dimensions of
the ¢ and ¢ fields, respectively. It follows from the« 1
qd= ¢, Yy— — i symmetry, moreover, that the fieltl must be
dimensionless, whereupdm/]=T 29?7, The exponentsy
andz can be obtained perturbatively from diagrammatic cor-
rections to the propagator. In fact, however, it is a trivial
matter to check that there are no such corrections to the
Suppose now that there is an extra term in the Lagrangiapropagator coming from the nonlinear terms in E#0).
that breaks theb« s symmetry. Systems with infinite num- Therefore,y and z take their mean field values 0 and 1,
bers of absorbing statg®1], which occur in some of the respectively. Putting all this together yields=d/2. Thus
same physical contextmotably catalysis and epidemiology one obtains the known exact results for the voter model
that give rise to models in the RFT universality class, con{5,23: §=1/2 ind=1 andé=1 ind=2.

This is a well-known scaling law for RF[12,3], previously
derived from a self-duality relatiof12,3]. Our derivation
follows directly from the symmetry of the Lagrangian an
does not require the self-duality property.

B. Systems without the RFT symmetry
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D. Dynamical percolation dz
Percolation clusters can be generated from the discrete nt2o+l= 2 (12

dynamical model known agynamical percolationproposed . _ . :

by Grassbergef25] to describe the spreading of epidemics @S & scaling law for dynamical percolation. Checking that
or forest fired6,7]. Expressed in the language of forest fires, (NS scaling relation coincides with the one derived by Grass-
the idea is that a propagating fire front leaves behind a clus2€r9€r in Ref.[25], namely, y=2(vd/2—-p), is a simple

ter of burned trees that cannot burn again. Below a critica[aSk; one need only note the following correspondence be-
value of the control parameter of the system, the fire burn ween the exponents considered here and the ones defined in

itself out in finite time, putting the system in the absorbingfzs]' 0=pl7, z=2vl, andy=y/r—1.
phase and leaving behind a finite cluster of burned trees.
Right at the critical value, the number of trees in the burned
cluster diverges in the thermodynamic limit, while above In discrete models with absorbing states, an expoient
criticality the system is in the active phase, characterized bgan be readily defined as governing the asymptotic decay of
a fire that survives indefinitely and an ever-expanding burnethe survival probability at criticality. In field theories with
cluster. The cluster generated at criticality is precisely thecontinuous variables, however, the survival probability is al-
(fracta) percolation cluster for the lattice in question. ways unity and it is unclear that can even be defined sen-
The discrete model can be written as a field theory charsibly. Here we have proposed a rationalization of this prob-

V. CONCLUSIONS

acterized by the Lagrangidf]

sz d dt

D 2 2
S ¢—w(at¢—v o1

t
+W¢J0ds ¢(s)) . (11)

lem, by definingd in terms of the way the probability
distribution piles up around the absorbing state. We have
presented arguments to support the validity of this definition,
which we then used to derivé directly from field theory.
Applying this method to a number of different cases of in-
terest, we reproduced correct scaling relations in all cases
and were able to compute known values &fexactly in
others. This strongly supports the legitimacy of our construc-

As before, naive power counting analysis straightforwardlytion. Together with our definition, standard field-theoretic

yields the resulf ¢¢]o~T 972 It is easy to verify, more-
over, that the Lagrangiafll) satisfies the symmetry7(c)]
(X, t)——fids ¢(x,s) or, equivalently, ¢(x,t)—
—&z/;()?,t)/&t. From this symmetry it follows immediately
that[ ¢p]o~T 974 Y2 [ ]o~T 97412 and the upper criti-
cal dimensiond,, is 6, the known result for dynamical per-
colation[25]. When corrections to the naive scaling coming
from diagrams are introduced, one ggts]~T 924~ 1/2+x
and [ ]~T 974 Y2ty \where, as beforey and y are the

techniques can be used to derive scaling relations and critical
exponents for systems with absorbing states more easily and
systematically than in other methods. Applications of these
ideas to field theories for problems with multiplicative noise
[8] and to Peliti's field theory[24] for the reactionA
+A— A will be addressed elsewhere.
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