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Survival probability and field theory in systems with absorbing states
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An important quantity in the analysis of systems with absorbing states is the survival probabilityPs(t), the
probability that an initial localized seed of particles has not completely disappeared after timet. At the
transition into the absorbing phase, this probability scales for larget like t2d. It is not at all obvious how to
computed in continuous field theories, wherePs(t) is strictly unity for all finite t. We propose here an
interpretation ford in field theory and devise a practical method to determine it analytically. The method is
applied to field theories representing absorbing-state systems in several distinct universality classes. Scaling
relations are systematically derived and the known exactd value is obtained for the voter model universality
class.@S1063-651X~97!00211-0#

PACS number~s!: 64.60.Ht, 02.50.2r, 05.70.Ln
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I. INTRODUCTION

Certain stochastic nonequilibrium systems possess
sorbing configurations, that is, states that have no fluc
tions, and in which the system can become trapped. Am
the many examples are autocatalytic chemical reactions@1#,
the contact process@2,3#, directed percolation@3,4#, the voter
model@5#, models for the spread of epidemics or forest fir
@6,7#, systems with multiplicative noise@8#, and models of
transport in random media@9#. The number of absorbing
configurations is typically unity, but can be larger than th
@10#, and in some cases can diverge in the thermodyna
limit @11#.

The phase diagram of this kind of system consists,
general, of two different phases: anabsorbing phase, in
which the steady state consists entirely of absorbing confi
rations and in which the order-parameter field vanishes id
tically, and anactive phase, in which the steady-state dynam
ics is nontrivial and the order-parameter field has
nonvanishing expectation value. Separating these two ph
is a critical point ~or surface of critical points!, where the
system exhibits a nonequilibrium phase transition from
active to the absorbing phase. As usual, physical quant
behave like power laws at the critical point. An importa
task is the categorization of different discrete lattice mod
with absorbing states into universality classes character
by specific sets of critical exponents. Typically this is do
by associating with each universality class a field theory w
unique symmetry properties.

Standard quantities of interest such as the order param
M (D), the correlation lengthj(D), and the correlation time
t(D) are computed in steady state as functions of the
tanceD to the critical point. Typically, such computation
begin with homogeneously random initial conditions. In sy
tems with absorbing states, however, the dynamical ev
tion from an initial condition consisting of an absorbing co
figuration slightly modified by a localized ‘‘seed’’ of th
order parameter gives additional information about the c
cal point. For a concrete example of such a seed initial c
dition, consider models for the spread of epidemics. Here
seed consists of an isolated infected individual placed
561063-651X/97/56~5!/5101~5!/$10.00
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some arbitrary site of a lattice otherwise populated
healthy individuals. The propagation of the infection is th
studied as a function of time for different parameter valu
The critical point or surface separates the active phase
which the initial infected seed propagates indefinitely, fro
the absorbing phase, in which the infection dies out w
probability one ast→`.

Interesting quantities to consider in this case areN(t),
R(t), andPs(t), respectively defined~in the language of epi-
demics! as the average total number of infected sites,
average linear extent of the infected region, and the surv
probability, i.e., the probability that at timet the system has
not reached an absorbing configuration free from infec
sites @12#. At the critical point and for asymptotically long
times, these quantities scale likeN(t);th, R2(t);tz, and
Ps(t);t2d, which define the exponentsh, z, andd, respec-
tively.

While there has been steady progress in associa
groups of discrete lattice models with particular field theor
and hence a known universality class, an outstanding p
lem with defining the survival probability remains. The poi
is that for microscopic lattice models, where the dynami
variable is typically discrete, there is always a nonzero pr
ability of reaching the absorbing state in finite time from
seed initial condition.Ps(t) is then clearly a nonincreasin
function of t, and the associated exponentd can be readily
defined at criticality. In field theories with continuous var
ables, on the other hand, the absorbing state is a set of m
sure zero in phase space and so can never actually be rea
in finite time. ThusPs(t) is strictly equal to unity for allt, so
the concept of the survival probability has no utility. It is n
at all clear thatd can even be sensibly defined, let alo
computed. Indeed, this exponent is not calculated dire
from field theory in any of the existing analytical studie
Rather, its value is inferred from scaling laws relating it
other, calculable exponents@4#.

II. d EXPONENT IN FIELD THEORIES
WITH ABSORBING STATES

We now propose a solution to this problem by showi
how d can be defined and calculated in field theory. T
5101 © 1997 The American Physical Society
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main idea is that, althoughPs(t)51, states arbitrarily close
to the absorbing configuration can be reached in finite tim
In order to gain intuition about the approach to the absorb
state in models with continuous variables, let us consider
stochastic partial differential equation~Langevin! formula-
tion of the field theory@known as Reggeon field theor
~RFT! @4##, that characterizes the directed-percolation u
versality class. Aside from directed percolation, this imp
tant class includes, among many other problems, the con
process and simple models of heterogeneous catalysis
epidemiology@3#.

The Langevin equation takes the form

]f~x,t !/]t5n¹2f1af2bf21Afh~x,t !, ~1!

where n, a, and b are constants,f(x,t) is a continuous,
positive-semidefinite variable defined at positionx and time
t, andh is a Gaussian noise variable whose only nonvan
ing correlations arê h(x,t)h(x8,t8)&5Dd(x2x8)d(t2t8)
for some noise strengthD. This stochastic process ca
through standard techniques@13#, be transformed into a La
grangian formulation, the resulting field theory being RFT
is clear from the Langevin equation thatf(x)50 is an ab-
sorbing state that persists indefinitely in time. Rough
speaking~i.e., at the mean-field level!, this state is stable an
unstable fora,0 anda.0, respectively.

For simplicity, let us now consider the zero-dimension
~0D! Langevin equation appropriate for a single variab
]f/]t5af2bf21Afh. It is a simple exercise to deriv
the ~Fokker-Planck! equation for the evolution of the prob
ability distribution function associated with this equatio
@14#, and from it the stationary probability distribution func
tion P(f): P(f)}(1/f)exp@(2af2bf2)/D#. P(f) is non-
normalizable due to the nonintegrable singularity at the
gin. This implies that the only stationary distribution is ad
function atf50. ~Since this is true forany a value, there is
no active phase in the 0D problem.! An arbitrary initial prob-
ability distribution therefore evolves in time toward a dist
bution weighted at values off lying progressively closer to
zero. Note, however, thatf cannot actually achieve th
value 0 in finite time, so it is difficult to infer directly from
the ~Langevin! equation of motion thatf always reaches the
absorbing state atf50 asymptotically.

It is natural to suppose that a similar phenomenon occ
in higher dimensions, where active-to-absorbing phase t
sitions can occur. That is, any continuous equation in
same universality class as a microscopic model withd.0
should exhibit at criticality~and of course in the absorbin
phase! a progressive accumulation or piling up of the pro
ability distribution around the absorbing configuration@15#.
Based on this notion, we propose to relate the exponed
appearing in the microscopic models to the exponent gov
ing the accumulation of the probability density in a neig
borhood of the absorbing state of the corresponding Lan
vin equation or field theory. More specifically, we defin
P(a,t) for the field theory as the probability that the spa
integral of the density field is larger than an arbitrary co
stanta. Assuming that at the critical point there is a piling u
of probability at the origin,P(a,t) for any fixeda will de-
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crease with increasingt asymptotically. We then defineda at
criticality throughP(a,t);t2da, or, taking logarithmic de-
rivatives, as

da[2 lim
t→`

] ln@P~a,t !#

] lnt
. ~2!

If c is a real number larger than one, then triviallyP(a,t)
.P(ca,t), implying thatdca>da . We now conjecture tha

d5dca5da ~3!

for all sufficiently smalla andca, and thatd defined in this
way is the same as the survival probability exponent in
corresponding discrete models.

Though at present there is no direct numerical support
this conjecture, there is some indirect support. Following
strategy introduced by Dickman@16#, we have numerically
studied discretized versions of RFT, modified so as to p
duce an absorbing subspaceAe . Here Ae is defined as the
subspace of states in the phase space of the discretized
theory in which the density fieldf i at every pointi of the
discrete spatial lattice is less thane. If the system enters this
subspace as it evolves in time under numerical simulat
then it is considered to have reached the absorbing state
the simulation is terminated. Both our simulations of th
type and Dickman’s results show that the numerical value
de is independent ofe in such models, and that this valu
coincides with the value obtained from microscopic mode
such as the contact process@2#, believed to be in the sam
~directed-percolation! universality class@17# as RFT. In the
following sections, we use our conjecture to computed for
various field theories with absorbing states.

III. GENERAL PROCEDURE

Computingd requires the evaluation ofP(a,t) for the
problem with seed initial conditions. For any field theor
standard methods allow one to expressP(a,t) in a path in-
tegral representation as@13#

P~a,t !5E Df Dc QS E ddx f2a Dexp~2S!

Z
c~x0,t0!.

~4!

Heref is the density field,c is the response field,Q is
the Heaviside step function,S52*dt L is the action, i.e.,
the time integral of the dynamical Lagrangian defining t
field theory, and the normalization factorZ is the partition
function of the associated (d11)-dimensional problem. The
interpretation of the different terms in Eq.~4! is as follows:
c(x0,t0) creates a perturbation at positionx0 and time t0,
representing the initial seed@13#. Subsequently, the averag
of Q„*ddx f(x,t)2a… is computed by evaluating all contri
butions coming from all possible paths starting at timet0 and
ending at timet.t0. Each path is weighted by the expone
tial of its associated action, properly normalized. Sin
Q„*ddx f(x,t)2a… is 0 if the total number of particles a
time t is less thana and 1 otherwise, its expectation valu
gives preciselyP(a,t).

As theQ function is dimensionless, it follows straightfor
wardly from Eq. ~4! that the scaling dimensions@18# of



f

ta
on
tic

-

a
h

ee
i-
io

ite
y-

a
p

e

d

ia
-

n

ht-

of

ions

po-
ce

t-
ng

ms

-

be-
al
kes
and
-
his
uni-
ion

es:
-

of

or-
ial
the

,

del

56 5103SURVIVAL PROBABILITY AND FIELD THEORY IN . . .
P(a,t) and c(x,t) are equal. Since Eqs.~2! and ~3! imply
that P(a,t);t2d, we conclude that2d gives the scaling
dimension@c(x,t)# of the fieldc, expressed as a power o
an arbitrary timescaleT, i.e., that

@c#5T2d. ~5!

Thusd can be simply computed as the negative of the to
dimension of the response field in the field theory. This c
stitutes the main result of this paper and provides a prac
method for determiningd. Note thatd is well defined in the
field theory and is independent ofa, even though the sur
vival probability Ps(t) is always unity. We now use Eq.~5!
to determine scaling relations, and/or the value ofd, for dif-
ferent theories with absorbing states.

IV. APPLICATIONS

A. Reggeon field theory

The dynamical Lagrangian associated with Eq.~1! is
@4,13#

L5E ddx dtFD

2
c2f1c~] tf2¹2f2rf1uf2!G . ~6!

The fields and parameters can be rescaled so as to m
the coefficients of the two nonlinear terms the same. T
makes the Lagrangian invariant under the~permutation!
transformationf(xW ,t)↔c(xW ,2t). It is easy to check that in
order for the Lagrangian to be dimensionless, we n
@fc#0;T2dz/2, where@ #0 denotes the mean-field or eng
neering dimension. To account for the anomalous dimens
@13# coming from the diagrammatic corrections, we wr
L2;Tz, whereL is a length scale, thereby defining the d
namical exponent@19# z, and @fc#;T2dz/21m1g, wherem
and g are defined as the anomalous dimensions@18# of the
fields f andc respectively.

The permutation symmetry yields@f#5@c#, and conse-
quently m5g, whereupon we conclude that@c#52d5
2dz/41g. We are now in a position to related to the ex-
ponenth, an exponent commonly determined in numeric
studies of discrete models with absorbing states. This ex
nent is defined by the expressionN(t);th for the total num-
ber of particlesN(t) in the system at asymptotically larg
times t resulting from a single-particle initial seed@12,20#.
Now in the field-theory representation,N(t) is clearly given
by N(t);^*ddx f(x,t)c(0,0)&;tm1g, whereupon

4d12h5dz. ~7!

This is a well-known scaling law for RFT@12,3#, previously
derived from a self-duality relation@12,3#. Our derivation
follows directly from the symmetry of the Lagrangian an
does not require the self-duality property.

B. Systems without the RFT symmetry

Suppose now that there is an extra term in the Lagrang
that breaks thef↔c symmetry. Systems with infinite num
bers of absorbing states@21#, which occur in some of the
same physical contexts~notably catalysis and epidemiology!
that give rise to models in the RFT universality class, co
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stitute a familiar example. In this particular case, the rig
hand side of the Langevin equation~1! acquires@21# an extra
term proportional tof(x,t)exp@2w1*0

t dsf(x,s)#, i.e., a term
nonlocal in time, for some constantw1. This produces in the
Lagrangian~6! an extra term proportional to the product
this new contribution and the response fieldc; this extra
term clearly destroys thef↔c symmetry.

It has been argued that in this case the scaling relat
for initial seed problems require modification@22#. In the
corresponding microscopic models, a new universal ex
nent d8 is defined through the asymptotic time dependen
of the densityr(t) of particles in the occupied region resul
ing from an initial seed, averaged only over the survivi
trials. It follows from the definitions of the exponentsh, d,
andz that r(t);^N(t)&surv /Ld;td1h2dz/2 and hence that

2~d1d8!12h5dz. ~8!

This is precisely the scaling relation proposed for syste
with an infinite number of absorbing states@22#. It follows
further from the definition ofr(t) that in generalr(t)
;^fc&/P(a,t). When the permutation symmetry is re
stored, this givesd85d and we recover Eq.~7!.

C. Voter model and compact directed percolation

The voter model and compact directed percolation@5,23#
are models that have absorbing states and are known to
long in a universality class distinct from RFT. The physic
reason for this is that the dynamics in these models ta
place only at the boundaries separating empty regions
occupied~‘‘infected’’ ! regions, and not in the interior of oc
cupied clusters, as it does in models of the RFT class. T
difference changes the critical exponents and hence the
versality class. A Langevin equation describing this situat
was proposed in@23,24#:

] tf~x,t !5l¹2f~x,t !1@f~12f!#1/2h~x,t !, ~9!

where the noiseh is defined as in Eq.~1!. The associated
Lagrangian is

L5E ddx dtFD

2
f~12f!c22c~] tf2l¹2f!G . ~10!

Note that this model has two uniform absorbing stat
f(x)50 andf(x)51. The Lagrangian is also invariant un
der the transformationf↔12f, c→2c.

Counting powers as in RFT yields@fc#5T2zd/21m1g,
where, as before,m andg are the anomalous dimensions
the f and c fields, respectively. It follows from thef↔1
2f, c→2c symmetry, moreover, that the fieldf must be
dimensionless, whereupon@c#5T2zd/21g. The exponentsg
andz can be obtained perturbatively from diagrammatic c
rections to the propagator. In fact, however, it is a triv
matter to check that there are no such corrections to
propagator coming from the nonlinear terms in Eq.~10!.
Therefore,g and z take their mean field values 0 and 1
respectively. Putting all this together yieldsd5d/2. Thus
one obtains the known exact results for the voter mo
@5,23#: d51/2 in d51 andd51 in d52.
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D. Dynamical percolation

Percolation clusters can be generated from the disc
dynamical model known asdynamical percolation, proposed
by Grassberger@25# to describe the spreading of epidemi
or forest fires@6,7#. Expressed in the language of forest fire
the idea is that a propagating fire front leaves behind a c
ter of burned trees that cannot burn again. Below a crit
value of the control parameter of the system, the fire bu
itself out in finite time, putting the system in the absorbi
phase and leaving behind a finite cluster of burned tre
Right at the critical value, the number of trees in the burn
cluster diverges in the thermodynamic limit, while abo
criticality the system is in the active phase, characterized
a fire that survives indefinitely and an ever-expanding bur
cluster. The cluster generated at criticality is precisely
~fractal! percolation cluster for the lattice in question.

The discrete model can be written as a field theory ch
acterized by the Lagrangian@7#

L5E ddx dtFD

2
c2f2cS ] tf2¹2f2rf

1wfE
0

t

ds f~s! D G . ~11!

As before, naive power counting analysis straightforwar
yields the result@fc#0;T2dz/2. It is easy to verify, more-
over, that the Lagrangian~11! satisfies the symmetry@7~c!#

c(xW ,t)↔2*0
t ds f(xW ,s) or, equivalently, f(xW ,t)↔

2]c(xW ,t)/]t. From this symmetry it follows immediately
that @f#0;T2dz/421/2, @c#0;T2dz/411/2, and the upper criti-
cal dimensiondc is 6, the known result for dynamical pe
colation @25#. When corrections to the naive scaling comi
from diagrams are introduced, one gets@f#;T2dz/421/21m

and @c#;T2dz/411/21g, where, as before,m and g are the
anomalous dimensions of the fields. Using these express
the symmetry, and our conjecture we obtain after so
simple algebra
,
et
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te
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e

h12d115
dz

2
~12!

as a scaling law for dynamical percolation. Checking th
this scaling relation coincides with the one derived by Gra
berger in Ref.@25#, namely,g52(nd/22b), is a simple
task; one need only note the following correspondence
tween the exponents considered here and the ones defin
@25#: d5b/t, z52n/t, andh5g/t21.

V. CONCLUSIONS

In discrete models with absorbing states, an exponend
can be readily defined as governing the asymptotic deca
the survival probability at criticality. In field theories with
continuous variables, however, the survival probability is
ways unity and it is unclear thatd can even be defined sen
sibly. Here we have proposed a rationalization of this pro
lem, by defining d in terms of the way the probability
distribution piles up around the absorbing state. We h
presented arguments to support the validity of this definiti
which we then used to derived directly from field theory.
Applying this method to a number of different cases of
terest, we reproduced correct scaling relations in all ca
and were able to compute known values ofd exactly in
others. This strongly supports the legitimacy of our constr
tion. Together with our definition, standard field-theore
techniques can be used to derive scaling relations and cri
exponents for systems with absorbing states more easily
systematically than in other methods. Applications of the
ideas to field theories for problems with multiplicative noi
@8# and to Peliti’s field theory@24# for the reactionA
1A→A will be addressed elsewhere.
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